Rice in Asia: Too Little Iron, Too Much Arsenic (and arsenic causes cancer)

AlkalizeForHealth

 Home
 Contents
 Library

 

The information on this web site is provided for educational purposes only. Please see Disclaimer, Terms of Use, and Privacy Policy.

"The doctor of the future will give no medicine, but will interest his patients in the care of the human frame, in diet and in the cause and prevention of disease."
- Thomas Edison

Cancer is a political problem more than it is a medical problem.

"Monsanto should not have to vouchsafe the safety of biotech food," said Phil Angell, Monsanto's director of corporate communications. "Our interest is in selling as much of it as possible. Assuring its safety is the FDA's job." 
- New York Times, October 25, 1998

"What the FDA is doing and what the public thinks it's doing are as different as night and day." - Dr. Herbert Ley, Former FDA Commissioner

"The FDA serves as the pharmaceutical industry's watchdog, which can be called upon to attack and destroy a potential competitor under the guise of protecting the public." - Dr. James P. Carter  

 

 

The Institute of Science in Society

Science Society Sustainability http://www.i-sis.org.uk

General Enquiries sam@i-sis.org.uk Website/Mailing List press-release@i-sis.org.uk ISIS Director m.w.ho@i- sis.org.uk
 

ISIS Press Release 13/09/04

Rice in Asia: Too Little Iron, Too Much Arsenic

Asians are getting too little iron and too much arsenic from soil and water. Unfortunately the remedy for one problem may increase the impact of the other. The challenge is to find a remedy that takes care of both problems, says Prof. Joe Cummins.

A fully referenced version of this article is posted on ISIS members' website. Details here.

The problem of too little iron

It has been estimated that 40% of the world's women suffer some degree of iron deficiency. Anaemia is associated with learning difficulties in children, increased susceptibility to disease and reduced work capacity. Pre- menopausal women are most severely affected by iron deficiency, while men tend to retain iron (as indicated below, an iron overload diet may increase risk of cancer in males). Increasing iron in the diet is a desirable goal and rice is the preferred crop for genetic modification (GM) to increase iron in the diet, especially in Asia.

Researchers from the Japanese Electrical Power Research Institute increased the iron content of rice threefold by adding a seed-specific ferritin (an iron storage protein) from soybean under the control of a rice seed storage protein promoter. But although the iron content of the rice grain was increased significantly, there has been concern that the ferritin-bound iron may not be readily available in the digestive tract of mammals.

A Swiss research group transformed rice with a ferritin gene from snap beans under the control of a rice storage protein promoter accompanied by a fungal phytase gene also under the control of the storage protein promoter. The phytase gene produces an enzyme that increased iron availability during digestion. An endogenous rice metallothionein (a ubiquitous metal- binding cellular protein) was over-expressed in the transgenic rice to further aid in iron digestion by providing a form of iron readily taken up in the gut. An antibiotic resistance marker gene for the antibiotic hygromycin was added during the transformations of the rice. The iron content of the rice was doubled while, in contrast to the Japanese study, the iron was more readily available during digestion. The Swiss study was supported by the Rockefeller Foundation.

However, iron overload is a significant problem in males - it may lead to a condition called hemochromatosis in which the liver and other organs may be damaged, causing liver cancer or colorectal cancer. As much as one person in a hundred may carry a mutation (hereditary hemochromatosis) that makes them sensitive to iron overload at relatively modest iron intake levels. There is an association between increasing iron stores and risk of cancer.

In areas of the world where iron deficiency is commonplace, iron-enriched rice may prove beneficial, but the same iron-enriched rice could prove to be a liability in areas where iron intake is at high levels. Iron overload should be considered in the distribution of iron-enhanced rice. The need for labeling of iron rich rice products is evident.

The Arsenic Problem

Asia is facing a growing crisis in the use of arsenic-contaminated ground water for drinking and in irrigation of rice paddies. Arsenic pollution is a severe problem over Bangladesh/West Bengal and in the Red River Delta of Vietnam but it is also a chronic problem in Taiwan, China and Thailand. Most arsenic pollution is of natural origin, amplified by drawing water from contaminated deep aquifers, but China has arsenic pollution from burning high arsenic-containing coal. Arsenic has been shown (from studies in Taiwan) to cause cancer and circulatory problems at very low levels, the cancers include cancers of liver, lung, bladder and kidney. It has been estimated that the arsenic pollution of drinking water in the United States causes an average of 3000 cancer cases per year.

In Asia, the arsenic problem is amplified by the pollution of rice, the primary food source. Arsenic has been accumulating in paddy soil, resulting in the contamination of the rice grain. Rice contributes to an estimated 30 to 60% of the dietary intake of arsenic in polluted regions.

There is hope that rice strains can be selected that take in less arsenic than the varieties of rice currently in use. It has been found that arsenic is sequestered on iron-plaques (rust-like deposits) on the surface of roots of rice varieties that accumulate reduced levels of arsenic in grain. Rice paddies will continue to be polluted with arsenic in the soil because there is no practical method known to remediate the vast expanses of polluted soil. Breeding rice to reduce grain pollution seems to be an effective first step towards improving the diet in polluted areas and varieties with reduced grain content of arsenic are known.

Iron and arsenic interact in rice

There is a potential conflict in governmental and foundation programmes to develop and disseminate high- iron grain to alleviate iron-deficiency among rice consumers. The high- iron rice varieties currently under development include amplifying the expression of ferritin in grain and solubilising iron for uptake in the gut using a phytase gene from a fungus [3]. Arsenic reduced the concentration of iron in the plant in rice varieties that form iron-plaques on the roots; but in varieties lacking the iron-plaques, iron uptake was not reduced in the presence of arsenic. It appears that the iron-plaques sequester both iron and arsenic, so that both iron and arsenic are reduced in the rest of the plant.

The iron-enhanced grains designed to combat iron-deficiency are therefore, very likely to increase grain-arsenic levels in arsenic-polluted areas of Asia because the arsenic will not be sequestered on the root surface in iron plaques but instead will be taken into the shoot and end up in the rice grain. It seems a devil's bargain: either to make high-iron rice available at the cost of elevated arsenic or to make low-arsenic rice available without providing an alternate source of dietary iron.

But this dilemma only exists if one insists on GM rice as the only solution. It disappears instantly when one realizes that iron can be provided through other sources, such as beans and lentils which can easily be grown, and are rich sources of other essential nutrients besides.


This article can be found on the I-SIS website at http://www.i- sis.org.uk/RIATLITMA.php
 
If you like this original article from the Institute of Science in Society, and would like to continue receiving articles of this calibre, please consider making a donation or purchase on our website. ISIS is an independent, not-for-profit organisation dedicated to providing critical public information on cutting edge science, and to promoting social accountability and ecological sustainability in science.
 
 
  • If you would prefer to receive future mailings as plain text please let us know.

The Institute of Science in Society, PO Box 32097, London NW1 OXR
telephone: [44 20 8643 0681]   [44 20 7383 3376]   [44 20 7272 5636]

General Enquiries sam@i-sis.org.uk - Website/Mailing List press-release@i-sis.org.uk - ISIS Director m.w.ho@i- sis.org.uk

MATERIAL IN THIS EMAIL MAY BE REPRODUCED IN ANY FORM WITHOUT PERMISSION, ON CONDITION THAT IT IS ACCREDITED ACCORDINGLY AND CONTAINS A LINK TO http://www.i-sis.org.uk/

 
 

The Institute of Science in Society

Science Society Sustainability http://www.i-sis.org.uk

General Enquiries sam@i-sis.org.uk Website/Mailing List press-release@i-sis.org.uk ISIS Director m.w.ho@i- sis.org.uk
 

ISIS Press Release 14/09/04

Non-GM Iron Rice a Solution?

Is genetic engineering necessary to develop rice rich in iron? Lim Li Ching reports on successes achieved with conventional breeding.

Sources for this article are posted on ISIS members' website. Details here.

Iron deficieny

Iron deficiency is the most common of all nutritional deficiencies. Approximately 3.7 billion people suffer from this condition, and it is most widespread in children and lactating mothers. Iron deficiency leads to anaemia; overall, 39% of pre-school children and 52% of pregnant women are anaemic, of whom more than 90% live in developing countries.

Anaemia is bad for health and development. In infants and young children, it impairs growth, cognitive development and immunity; at school age it affects school performance and reduces activity levels; at adulthood it reduces work capacity and lowers resistance to fatigue. In pregnant women, it is linked with an increased risk of maternal mortality and illness, as well as an increased risk of pre- term delivery, retarded foetal growth, low birth weight and foetal death soon after birth.

Iron tablets are a possible solution, but require a continuous supply and can cause side effects. In the long term, ensuring adequate iron intake through food is viewed as the best option. For most populations, the best sources of iron are meat products, but these are relatively expensive and little consumed by the poor.

Conventionally bred `biofortified' rice

Rice, the staple diet of millions in the developing world, is a poor source of micronutrients. Where rice is the staple, about two billion people suffer from iron-deficiency anaemia. Efforts have thus focussed on `biofortifying' rice to make it nutritionally better. Genetically engineering rice to increase its iron content has been one course of action (see "Rice in Asia: Too little iron, too much arsenic", this series).

But is genetic engineering needed to develop iron-rich rice? There are already successes reported in naturally breeding and selecting rice with high iron content, which would not carry the risks associated with genetic engineering.

Plant breeders at the Philippines-based International Rice Research Institute (IRRI) have identified rice varieties that are naturally high in iron. They screened nearly 7 000 samples of rice germplasm stored in the IRRI gene bank, for high iron and zinc content. Of these, 1 138 samples were grown. They found that aromatic grains were usually higher in iron concentration and often also higher in zinc, compared to non-aromatic varieties. Data from various studies demonstrated that high iron and high zinc traits were generally expressed in all rice environments tested.

IRRI at the same time was trying to grow, by conventional breeding, new varieties that could thrive in poor soils and cold temperatures. "Quite by chance, it was discovered that one of the varieties designed to tolerate low temperatures had also inherited a richness in iron and zinc from one of its parents," explains IRRI scientist Dr. Glenn Gregorio.

This aromatic variety is a cross between a high-yielding variety and a traditional variety from India, from which IRRI identified an improved line (IR68144-3B-2-2-3) with high iron concentration. The grain has 21 parts per million (mg/kg) of iron, about double the normal content in rice, and also about 34 parts per million of zinc.

Research has shown that high zinc and iron densities are positively correlated. Zinc may enhance the body's capacity to absorb iron. It is essential for a healthy immune system. Zinc deficiency in children is also associated with poor growth, reduced motor and cognitive development, and increased infectious diseases. It is linked to pregnancy and childbirth complications, lower birth weight and other foetal effects lasting through childhood. Moreover, high zinc density is good for seedling vigour, improving plant yields. IR68144 is also reported to have a high content of Vitamin A.

"Almost as a bonus, it had good flavour, texture, and cooking qualities. And, to please the farmers, it was also high-yielding." This bodes well, for adding new traits can sometimes have a general negative effect on yield. The rice also has good tolerance to rice tungro virus and to mineral-deficient soils. All these factors are important for maintaining crop productivity and consumer acceptance, crucial to ensure that new varieties sustain farmers' incomes.

Trials establish that iron is absorbed

Does the increased iron content translate into improved iron status in the consumer? After 15 minutes of polishing, scientists found that IR68144 had approximately 80% more iron than a popular but low-iron commercial variety. Research conducted at Cornell University showed that the iron in IR68144 polished rice was absorbed by laboratory rats, and by human colon cells in culture.

"Then we fed some other high-iron varieties experimentally to a family of two parents and four children living near IRRI's headquarters in the Philippine province of Laguna," Dr. Gregorio said. "All but the father were mildly anaemic. After the family members ate the enriched rice for two months, however, their serum ferritin levels rose dramatically, to the point where the lowest of them was double the level recommended for good health."

In 1999, a trial was carried out on 27 women in the Philippines, who ate IR68144 exclusively over six months. The volunteers - sisters at a Roman Catholic convent - had their food measured, their activity monitored and body weight noted. Once a month, their blood was tested. The sisters were selected because they represent a sex and age segment of the population at high risk of iron deficiency.

Most of the sisters, aged between 20 and 30 years old, were mildly anaemic while on their normal diet of rice purchased from the market. 74% were anaemic (haemoglobin <120 g/L) and 48% were iron-deficient (serum ferritin <12 g/L). But, after eating IR68144, the serum ferritin (an iron storage protein) levels in their blood increased - in many instances two or three times higher. In some cases, this was sufficient to raise their iron levels from deficient to above average.

A much larger and carefully structured clinical trial, involving 300 sisters from eight convents around Manila concluded in September 2003. In one of the largest human feeding trials of a staple food, each sister was randomly assigned to receive either regular (low-iron) rice or the high-iron variety. The sisters and the research team were not told what they were receiving during the trial. The food was cooked in a common kitchen and consumed in a common dining room, so the distribution and consumption of different rice varieties could be carefully monitored.

The sisters' iron status, as shown by haemoglobin and other biochemical indicators, was measured before the trial began, halfway (4.5 months) and at the conclusion (9 months). Women remaining - or newly - iron-deficient at the end of the trial were given iron supplements to ensure this deficiency was corrected. The trial also examined the interplay of minerals and nutrients within the body to look at their interactions, and observed the sisters' cognitive functions and capacity to concentrate.

Preliminary analysis of the data indicates positive results. There was modest improvement in blood iron levels, showing that iron in rice endosperm is absorbed by the body. Among the women who were iron-deficient but not yet anaemic at the start of the trial, total body iron reserves improved significantly. The women who consumed high-iron rice took in about 20% more iron per day than those who ate regular rice, and increased their body iron by 10%, while the women consuming control rice actually lost 6% of their body iron. The greatest increases in body iron were seen in the women who consumed the most iron from biofortified rice. The results of the study are being published.

Future scenarios

The next step would be to conduct trials on the effect and use of high-iron rice in a community setting and on the effect on children's iron status. A study is planned in Bangladesh in 2004-2005. If successful, IR68144 seeds will be given to agricultural research organizations in various countries for adaptability testing and to begin crossbreeding for pest and disease resistance as well as hardiness for local conditions.

IR68144 or its offspring could then be released to farmers in developing countries, for free, in two or three years. Meanwhile, IRRI's search continues, among the 26 000 samples of rice varieties it holds in trust for humankind. Dr. Gregorio is sure that a new variety could be bred with even higher iron content. IR68144 could be the first of several traditional rice varieties found to be nutritionally richer than previously thought.

Already, recent reports indicate that Thailand's Department of Agriculture has identified two rice strains - selected from 45 strains of Thai rice - that can accumulate iron. Korkhor 23 has an iron content of 36.67 parts per million (ppm) when unpolished, reduced to 22.5ppm when polished. Unpolished Khao Hom Phitsanulok 1 rice has an iron content of 25ppm, compared with 22.5ppm in it polished state. Rice grown in different areas have different rates of iron accumulation. Research continues to find better iron- accumulating strains, and to determine the best growing and milling techniques to preserve iron in the rice. However, Dr. Laddawal Kannanut of the Rice Research Institute was quoted as saying that genetic engineering would be used to improve the strains' ability to accumulate iron.

This is unnecessary, for as the IRRI research shows, conventional breeding can successfully develop high-iron rice that is both high yielding and disease resistant. Conventional breeding works because iron occurs naturally in rice grains and the high variability in the grain iron content allows selection of high-iron parents for crossbreeding. Moreover, farmers will grow the iron-dense rice because its high- yielding characteristic makes it profitable to do so. And, trace minerals such as iron are undetected by the human eye and thus do not affect consumer's preference.

In future, it won't be just rice that is targeted for biofortification. Significant funding has been committed to develop biofortified crops. The IR68144 research is now part of a larger initiative by the Consultative Group on International Agricultural Research (CGIAR) and its research centres worldwide, coordinated by the International Food Policy Research Institute (IPFRI). In October 2003, the Gates Foundation committed $25 million to this initiative, HarvestPlus, which aims to develop crops with enhanced nutrient status: not just with iron but also with vitamin A and zinc and in other key staple crops important to the poor (wheat, maize, beans, cassava, and sweet potato).

The danger is that the efforts will focus on genetic engineering, at the expense of safer alternatives. For example, IRRI claims that for vitamin A enhancement, genetic engineering is needed, as vitamin A does not occur naturally in rice grains. In 1999, Swiss scientists successfully expressed vitamin A in transgenic rice grains - the so- called `Golden Rice'. IRRI is now incorporating the vitamin A genes into high yielding varieties.

Biofortifying food crops, even by means of conventional breeding, must not replace other interventions such as diversifying diets, conventional fortification and supplementation. Efforts to enhance the iron content of rice must also be mindful of the interaction between iron and arsenic, a particular problem for the arsenic-contaminated paddy fields of Asia (see "Rice in Asia: Too little iron, too much arsenic", this series). In addition, in areas where iron intake is high, iron overload can become a real problem.

The need for biofortification today is largely due to the mistakes of the past. For example Green Revolution methods have mined the soil of nutrients and monocultures have resulted in the loss of diverse traditional varieties. Alternative food sources rich in iron should be promoted, as should diverse cropping and sustainable agriculture. This could prove to be a much more sustainable strategy in addressing iron deficiency.


This article can be found on the I-SIS website at http://www.i- sis.org.uk/NGMIRAS.php
 
If you like this original article from the Institute of Science in Society, and would like to continue receiving articles of this calibre, please consider making a donation or purchase on our website. ISIS is an independent, not-for-profit organisation dedicated to providing critical public information on cutting edge science, and to promoting social accountability and ecological sustainability in science.
 
 
  • If you would prefer to receive future mailings as plain text please let us know.

The Institute of Science in Society, PO Box 32097, London NW1 OXR
telephone: [44 20 8643 0681]   [44 20 7383 3376]   [44 20 7272 5636]

General Enquiries sam@i-sis.org.uk - Website/Mailing List press-release@i-sis.org.uk - ISIS Director m.w.ho@i- sis.org.uk

MATERIAL IN THIS EMAIL MAY BE REPRODUCED IN ANY FORM WITHOUT PERMISSION, ON CONDITION THAT IT IS ACCREDITED ACCORDINGLY AND CONTAINS A LINK TO http://www.i-sis.org.uk/

 

 

 

 

 


 


 Home Contents Library

 

 
Xlear Sinus Care Nasal Spray - .75 fl oz (Pack of 3)

  • Patented and drug-free solution with xylitol is safe and effective
  • ALL NATURAL - No GMO's and BPA free
  • Safe for all ages and during pregnancy or while nursing
  • Safely removes airborne contaminants, dust, and other irritants
  • Recommended by Doctors, Dentists, and Pediatricians around the world!

 

 
Epic Dental 100% Xylitol Sweetened Gum, 12 Count (Pack of 12)
  • Contains 144 pieces
  • 45% More Xylitol than other brands
  • 1.06 grams Xylitol per piece
  • Contains no aspartame; All-natural product
  • Gluten free

Peppermint, Spearmint, Cinnamon, Fresh Fruit

 

 
Xylitol Toothpaste (Fluoride Free)

Squiggle Toothpaste
Single tube, 12 pack (4 oz each)
No added flavor
$1.94/oz
6 pack (4 oz each)
Peppermint, Cinnamon

$1.50/oz
1 pack (6.4 oz each)
Refreshmint, Cinnafresh
.64/oz
2 pack (4.9 oz each)
Spearmint

$1.12/oz

 

In 1904 there was very little cancer. Now there is an abundance of cancer. What has changed? Can this be reversed? If you have cancer or do not want to get cancer the information you and your family need is on this web site.

 

Note: there are two ways to navigate this site. You can follow the pages in their logical sequence, or you can access every page from "Contents".

 

For your assistance, there are Google search boxes on each page that will allow you to search this web site or the entire Internet for more information.

 

Alkalize For Health Site Search 

Custom Search

Search the Internet with Google

 

 

Copyright 2000 - 2017 AlkalizeForHealth
All rights reserved.

Home               Contents               Library